Thermochemisrty

0

Exothermic process:

any process that gives of heat transfer thermal energy from the system to the surroundins $2H_2(g) + O_2(g) \rightarrow 2H_2O(L) +$ energy $H_2O(g) \rightarrow H_2O(L)$ + energy

Endothermic process:

is any process in which heat has to be supplied to the system from the surrounding . Energy $\pm 2H_{2}$, $2H_{3}(1) \pm O_{4}(2)$

Energy + 2Hgo \rightarrow 2Hg(L) + O₂ (g) Energy + H₂O(g) \rightarrow H₂O (L)

Enthalpy (H) :

is used to quantity the heat flow in to or out of a system in a process that occurs at constant pressure . $\Delta H = H (products) - H (reactant)$.

Standard enthalpy of formation (ΔHf°) :

is the heat change that results when one mole of a compounds is formed from its elements at a pressure of I atm .

The standard enthalpy of formation of any elements in its most stable form is zero Δ Hf \circ (O₂) = 0

The standard enthalpy of reaction (∆H∘ re) : is the enthalpy of a reaction carried out at 1 atm. aA + bB = cC + dD $\Delta H \circ re = \sum n \Delta H \circ f (product) - \sum$ $m\Delta H^{\circ}f$ (reaction)

Hess 's law

where reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps